Home
Random
Log in
Settings
Donate
About Wikiversity
Disclaimers
Search
Đẳng thức lượng giác
Language
Watch
Edit
Đẳng thức thương số
Đẳng thức Pythago
Đẳng thức góc đôi
Đẳng thức tổng 2 góc
Đẳng thức đổi tích thành tổng
Đẳng thức lũy thừa số phức
Đẳng thức hàm số lượng giác nghịch
Hàm số
edit
e
x
=
sinh
x
+
cosh
x
{\displaystyle e^{x}=\sinh x+\cosh x}
cosh
2
x
−
sinh
2
x
=
1
{\displaystyle \cosh ^{2}x-\sinh ^{2}x=1}
s
e
c
h
2
x
=
1
−
tanh
2
x
{\displaystyle \mathrm {sech} ^{2}x=1-\tanh ^{2}x}
c
s
c
h
2
x
=
c
o
t
h
2
x
−
1
{\displaystyle \mathrm {csch} ^{2}x=\mathrm {coth} ^{2}x-1}
sinh
x
=
−
i
sin
i
x
=
e
x
−
e
−
x
2
{\displaystyle \sinh x=-i\sin ix={\frac {e^{x}-e^{-x}}{2}}}
cosh
x
=
cos
i
x
=
e
x
+
e
−
x
2
{\displaystyle \cosh x=\cos ix={\frac {e^{x}+e^{-x}}{2}}}
tanh
x
=
−
i
tan
i
x
=
e
x
−
e
−
x
e
x
+
e
−
x
{\displaystyle \tanh x=-i\tan ix={\frac {e^{x}-e^{-x}}{e^{x}+e^{-x}}}}
c
s
c
h
x
=
i
csc
i
x
=
2
e
x
−
e
−
x
{\displaystyle \mathrm {csch} x=i\csc ix={\frac {2}{e^{x}-e^{-x}}}}
s
e
c
h
x
=
sec
i
x
=
2
e
x
+
e
−
x
{\displaystyle \mathrm {sech} x=\sec ix={\frac {2}{e^{x}+e^{-x}}}}
c
o
t
h
x
=
i
cot
i
x
=
e
x
+
e
−
x
e
x
−
e
−
x
{\displaystyle \mathrm {coth} x=i\cot ix={\frac {e^{x}+e^{-x}}{e^{x}-e^{-x}}}}
Đẳng thức hàm số nghịch
edit
a
r
s
i
n
h
x
=
∫
0
x
1
t
2
+
1
d
t
=
log
(
x
+
x
2
+
1
)
{\displaystyle \mathrm {arsinh} x=\int _{0}^{x}{\frac {1}{\sqrt {t^{2}+1}}}\mathrm {d} t=\log \left(x+{\sqrt {x^{2}+1}}\right)}
a
r
c
o
s
h
x
=
∫
1
x
1
t
2
−
1
d
t
=
log
(
x
+
x
2
−
1
)
{\displaystyle \mathrm {arcosh} x=\int _{1}^{x}{\frac {1}{\sqrt {t^{2}-1}}}\mathrm {d} t=\log \left(x+{\sqrt {x^{2}-1}}\right)}
a
r
t
a
n
h
x
=
∫
0
x
1
1
−
t
2
d
t
=
1
2
log
(
1
+
x
1
−
x
)
{\displaystyle \mathrm {artanh} x=\int _{0}^{x}{\frac {1}{1-t^{2}}}\mathrm {d} t={\frac {1}{2}}\log \left({\frac {1+x}{1-x}}\right)}
a
r
c
c
s
h
x
=
log
(
1
+
1
+
x
2
x
)
{\displaystyle \mathrm {arccsh} x=\log \left({\frac {1+{\sqrt {1+x^{2}}}}{x}}\right)}
a
r
s
e
c
h
x
=
log
(
1
+
1
−
x
2
x
)
{\displaystyle \mathrm {arsech} x=\log \left({\frac {1+{\sqrt {1-x^{2}}}}{x}}\right)}
a
r
c
o
t
h
x
=
1
2
log
(
x
+
1
x
−
1
)
{\displaystyle \mathrm {arcoth} x={\frac {1}{2}}\log \left({\frac {x+1}{x-1}}\right)}
Xem thêm
edit
Đẳng thức hàm số lượng giác cơ bản
Đẳng thức lượng giác hàm số nghịch