ਓਪਰੇਟਰ (ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ)
ਅਸੀਂ ਦੇਖਿਆ ਹੈ ਕਿ ਇੱਕ ਫੰਕਸ਼ਨਲ ਇੱਕ ਮਸ਼ੀਨ ਹੈ ਜਿਸ ਵਿੱਚ ਇੱਕ ਕੈੱਟ ਵੈਕਟਰ ਇਨਪੁੱਟ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇੱਕ ਕੰਪਲੈਕਸ ਨੰਬਰ ਬਾਹਰ ਨਿਕਲਦਾ ਹੈ| ਇੱਕ ਕੁੱਝ ਵੱਖਰੀ ਮਸ਼ੀਨ ਨੂੰ ਲਓ ਜਿਸ ਵਿੱਚ ਇੱਕ ਕੈੱਟ ਵੈਕਟਰ ਇਨਪੁਟ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਨਿਰਧਾਰਿਤ ਅੰਦਾਜ ਵਿੱਚ ਇੱਕ ਹੋਰ ਕੈੱਟ ਵੈਕਟਰ ਬਾਹਰ ਨਿਕਲਦਾ ਹੋਵੇ| ਗਣਿਤਸ਼ਾਸਤਰੀ ਅਜਿਹੀ ਮਸ਼ੀਨ ਨੂੰ ਇੱਕ ਓਪਰੇਟਰ ਕਹਿੰਦੇ ਹਨ| ਅਸੀਂ ਸਿਰਫ ਉਹਨਾਂ ਓਪਰੇਟਰਾਂ ਵਿੱਚ ਦਿਲਚਸਪੀ ਰੱਖਾਂਗੇ ਜੋ ਉਹਨਾਂ ਕੈੱਟ ਵੈਕਟਰਾਂ ਦੀ ਰੇਖਿਕ ਨਿਰਭਰਤਾ ਰੱਖਦੇ ਹਨ ਜਿਹਨਾਂ ਤੇ ਉਹ ਕ੍ਰਿਆ ਕਰਦੇ ਹਨ| ਅਜਿਹੇ ਓਪਰੇਟਰਾਂ ਨੂੰ ਰੇਖਿਕ ਓਪਰੇਟਰ ਕਿਹਾ ਜਾਂਦਾ ਹੈ| ਇੱਕ X ਨਾਮ ਦੇ ਓਪਰੇਟਰ ਨੂੰ ਲਓ| ਮੰਨ ਲਓ ਕਿ ਜਦੋਂ ਇਹ ਓਪਰੇਟਰ ਇੱਕ ਆਮ ਕੈੱਟ ਵੈਕਟਰ |A〉ਤੇ ਕ੍ਰਿਆ ਕਰਦਾ ਹੈ ਤਾਂ ਇਹ ਇੱਕ ਨਵਾਂ ਕੈੱਟ ਵੈਕਟਰ X|A〉ਬਾਹਰ ਕੱਢ ਦਿੰਦਾ ਹੈ| ਓਪਰੇਟਰ X ਇੱਕ ਰੇਖਿਕ ਓਪਰੇਟਰ ਹੁੰਦਾ ਹੈ ਜੇਕਰ; X (|A〉+|B〉)= X|A〉 + X|B〉
ਸਾਰੇ ਕੈੱਟ ਵੈਕਟਰਾਂ |A〉 ਅਤੇ|B〉 ਲਈ, ਅਤੇ X (c|A〉) = c X|A〉
ਸਾਰੇ ਕੰਪਲੈਕਸ ਨੰਬਰਾਂ c ਲਈ ਹੋਵੇ| ਓਪਰੇਟਰ X ਅਤੇ Y ਬਰਾਬਰ ਕਹੇ ਜਾਣਗੇ ਜੇਕਰ X|A〉= Y|A〉
ਸਵਾਲ ਵਿੱਚ ਕੈੱਟ ਸਪੇਸ ਵਿੱਚ ਸਾਰੇ ਕੈੱਟਾਂ ਲਈ ਹੋਵੇ| ਓਪਰੇਟਰ X ਨੂੰ ਨੱਲ ਓਪਰੇਟਰ ਕਿਹਾਸ ਜਾਂਦਾ ਹੈ ਜੇਕਰ X|A〉=|0〉 ਸਪੇਸ ਵਿੱਚ ਸਾਰੇ ਕੈੱਟ ਵੈਕਟਰਾਂ ਲਈ ਹੋਵੇ| ਓਪਰੇਟਰ ਆਪਸ ਵਿੱਚ ਜੋੜੇ ਜਾ ਸਕਦੇ ਹਨ| ਅਜਿਹਾ ਜੋੜ ਕਮੀਉਟੇਟਿਵ ਅਤੇ ਐਸੋਸੀਏਟਿਵ ਅਲਜਬਰੇ ਦਾ ਪਾਲਣ ਕਰਦਾ ਹੈ| X + Y = Y + X X + (Y + Z) = (X + Y) + Z
ਓਪਰੇਟਰਾਂ ਨੂੰ ਗੁਣਾ ਵੀ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ| ਗੁਣਨਫਲ ਐਸੋਸੀਏਈਟਵ ਹੁੰਦਾ ਹੈ:
X(Y|A〉)= (X Y) |A〉 = X Y |A〉 X(Y Z) = (X Y)Z = X Y Z
ਫੇਰ ਵੀ, ਆਮ ਤੌਰ ਤੇ, ਗੁਣਨਫਲ ਕਮੀਊਟੇਟਿਵ ਨਹੀਂ ਹੈ: X Y ≠Y X ਹੁਣ ਤੱਕ, ਅਸੀਂ ਕੈੱਟ ਵੈਕਟਰਾਂ ਤੇ ਕ੍ਰਿਆ ਕਰ ਰਹੇ ਰੇਖਿਕ ਓਪਰੇਟਰਾਂ ਬਾਰੇ ਹੀ ਗੱਲ ਕੀਤੀ ਹੈ| ਅਸੀਂ ਉਹਨਾਂ ਦੀ ਬਰਾ ਵੈਕਟਰਾਂ ਦੇ ਓਪਰੇਟਿੰਗ ਨੂੰ ਵੀ ਨਾਮ ਦੇ ਸਕਦੇ ਹਾਂ| ਇੱਕ ਆਮ ਬਰਾ ਵੈਕਟਰ 〈B| ਅਤੇ ਕੈੱਟ X|A〉 ਦੇ ਅੰਦਰੂਨੀ ਪ੍ਰੋਡਕਟ ਨੂੰ ਲਓ| ਇਹ ਪ੍ਰੋਡਕਟ ਇੱਕ ਨੰਬਰ ਹੁੰਦਾ ਹੈ ਜੋ |A〉 ਤੇ ਰੇਖਿਕ ਤੌਰ ਤੇ ਨਿਰਭਰ ਹੈ| ਇਸਲਈ, ਇਸਨੂੰ |A〉 ਦੇ ਕਿਸੇ ਬਰਾ ਵੈਕਟਰ ਨਾਲ ਅੰਦਰੂਨੀ ਪ੍ਰੋਡਕਟ ਦੇ ਤੌਰ ਤੇ ਲਿਆ ਜਾ ਸਕਦਾ ਹੈ| ਇਹ ਬਰਾ ਵੈਕਟਰ ਰੇਖਿਕ ਤੌਰ ਤੇ〈B| ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ, ਇਸਲਈ ਅਸੀਂ ਇਸ ਨੂੰ 〈B| ਤੇ ਲਾਗੂ ਕਿਸੇ ਰੇਖਿਕ ਓਪਰੇਟਰ ਦੇ ਨਤੀਜੇ ਦੇ ਰੂਪ ਵਿੱਚ ਦੇਖਦੇ ਹਾਂ| ਇਹ ਓਪਰੇਟਰ ਨਿਰਾਲੇ ਤੌਰ ਤੇ ਮੂਲ ਓਪਰੇਟਰ X ਰਾਹੀਂ ਨਿਰਧਾਰਿਤ ਹੁੰਦਾ ਹੈ, ਇਸਲਈ ਅਸੀਂ ਇਸਨੂੰ 〈B| ਤੇ ਕ੍ਰਿਆ ਕਰ ਰਿਹਾ ਓਪਰੇਟਰ ਵੀ ਕਹਿ ਸਕਦੇ ਹਾਂ| ਜਦੋਂ X ਓਪਰੇਟਰ 〈B| ਤੇ ਕ੍ਰਿਆ ਕਰਦਾ ਹੈ ਤਾਂ ਨਤੀਜੇ ਵਜੋਂ ਬਣਨ਼ ਵਾਲੇ ਬਰਾ ਲਈ ਢੁਕਵੀਂ ਧਾਰਨਾ 〈B|X ਹੋਵੇਗੀ| ਇਸ ਵੈਕਟਰ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨ ਵਾਲੀ ਸਮੀਕਰਨ ਇਸਤਰਾਂ ਬਣੇਗੀ;
(〈B|X)|A〉 = 〈B|(X|A〉)
ਜੋ ਕਿਸੇ ਵੀ |A〉 ਅਤੇ 〈B| ਲਈ ਹੈ| ਤਿੰਨਾਂ 〈B|, X ਅਤੇ |A〉 ਦੇ ਇਸ ਤੀਹਰੇ ਪ੍ਰੋਡਕਟ ਨੂੰ ਬਗੈਰ ਕਿਸੇ ਫਰਕ ਪਾਏ 〈B|X|A〉 ਵੀ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ, ਜੇਕਰ ਅਸੀਂ ਇਹ ਧਾਰਨਾ ਅਪਣਾਉਂਦੇ ਹਾਂ ਕਿ ਬਰਾ ਵੈਕਟਰ ਹਮੇਸ਼ਾਂ ਖੱਬੇ ਪਾਸੇ ਹੁੰਦਾ ਹੈ, ਓਪਰੇਟਰ ਅੱਧ ਵਿਚਕਾਰ, ਅਤੇ ਕੈੱਟ ਵੈਕਟਰ ਸੱਜੇ ਪਾਸੇ| ਹੁਣ X|A〉 ਦੇ ਦੂਹਰੇ ਬਰਾ ਵੈਕਟਰ ਨੂੰ ਲਓ| ਇਹ ਬਰਾ ਵੈਕਟਰ |A〉 ਤੇ ਉਲਟ-ਰੇਖਿਕ ਤੌਰ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਇਸ ਲਈ ਜਰੂਰ ਹੀ 〈A| ਤੇ ਰੇਖਿਕ ਤੌਰ ਤੇ ਨਿਰਭਰ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ| ਇਸਲਈ, ਇਸਨੂੰ 〈A| ਤੇ ਲਾਗੂ ਕਿਸੇ ਰੇਖਿਕ ਓਪਰੇਟਰ ਦੇ ਨਤੀਜੇ ਦੇ ਰੂਪ ਵਿੱਚ ਕਿਹਾ ਜਾ ਸਕਦਾ ਹੈ| ਇਸ ਓਪਰੇਟਰ ਨੂੰ Xਦਾ ਅਡਜੋਆਇਂਟ (adjoint) ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਅਤੇ X† ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ| ਇਸਲਈ,
X|A〉□(↔┴dc )〈A|X†
ਇਹ ਅਸਾਨੀ ਨਾਲ ਦਿਖਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ 〈B| X†|A〉 = 〈A|X |B〉*
ਅਤੇ (X Y) †= Y† X†
ਇਹ ਵੀ ਅਸਾਨੀ ਨਾਲ ਦੇਖਿਆ ਜਾਂਦਾ ਹੈ ਕਿ ਇੱਕ ਰੇਖਿਕ ਓਪਰੇਟਰ ਦੇ ਅਡਜੋਆਇਂਟ ਦਾ ਅਡਜੋਆਇਂਟ ਮੂਲ ਓਪਰੇਟਰ ਹੀ ਹੁੰਦਾ ਹੈ| ਇੱਕ ਹਰਮਿਸ਼ੀਅਨ ਓਪਰੇਟਰ ξ ਦੀ ਖਾਸ ਵਿਸ਼ੇਸ਼ਤਾ ਇਹ ਹੁੰਦੀ ਹੈ ਕਿ ਇਹ ਅਪਣਾ ਹੀ ਅਡਜੋਆਇਂਟ ਹੁੰਦਾ ਹੈ; ਯਾਨਿ ਕਿ
ξ= ξ†