Home
Random
Log in
Settings
Donate
About Wikiversity
Disclaimers
Search
Ghép cổng dùng cổng NAND
Language
Watch
Edit
Tạo cổng cơ bản bằng cách ghép cổng NAND
edit
Tên cổng
Ghép cổng
Cổng ghép
Toán
Cổng nghịch
Q
=
A
⋅
A
¯
=
A
¯
{\displaystyle Q={\overline {A\cdot A}}={\overline {A}}}
Cổng thuận
Q
=
A
⋅
A
¯
¯
=
A
{\displaystyle Q={\overline {\overline {A\cdot A}}}=A}
Cổng NAND
Q
=
A
⋅
B
¯
{\displaystyle Q={\overline {A\cdot B}}}
Cổng AND
Q
=
A
⋅
B
¯
¯
=
A
⋅
B
{\displaystyle Q={\overline {\overline {A\cdot B}}}=A\cdot B}
Cổng OR
Q
=
(
A
⋅
A
¯
)
⋅
(
B
⋅
B
¯
)
¯
=
A
+
B
{\displaystyle Q={\overline {({\overline {A\cdot A}})\cdot ({\overline {B\cdot B}})}}=A+B}
Cổng NOR
(
A
⋅
A
¯
)
⋅
(
B
⋅
B
¯
)
¯
¯
=
(
A
¯
)
⋅
(
B
¯
)
¯
=
A
¯
¯
+
B
¯
¯
=
A
¯
+
B
¯
{\displaystyle {\overline {\overline {({\overline {A\cdot A}})\cdot ({\overline {B\cdot B}})}}}={\overline {({\overline {A}})\cdot ({\overline {B}})}}={\overline {\overline {A}}}+{\overline {\overline {B}}}={\overline {A}}+{\overline {B}}}
Tạo cổng NAND nhiều chân bằng cách ghép cổng NAND
edit
NAND 1 chân
Q
=
A
⋅
A
¯
=
A
¯
{\displaystyle Q={\overline {A\cdot A}}={\overline {A}}}
NAND 2 chân
Q
=
A
⋅
B
¯
{\displaystyle Q={\overline {A\cdot B}}}
NAND 3 chân
Q
=
(
A
⋅
B
¯
)
⋅
C
¯
=
A
⋅
B
⋅
C
¯
{\displaystyle Q=({\overline {A\cdot B}})\cdot {\overline {C}}={\overline {A\cdot B\cdot C}}}
NAND 4 chân
Q
=
(
A
⋅
B
¯
)
⋅
(
C
⋅
D
¯
)
=
A
⋅
B
⋅
C
⋅
D
¯
{\displaystyle Q=({\overline {A\cdot B}})\cdot ({\overline {C\cdot D}})={\overline {A\cdot B\cdot C\cdot D}}}