Home
Random
Log in
Settings
Donate
About Wikiversity
Disclaimers
Search
Luật toán tích phân bất định
Language
Watch
Edit
Tích phân bất định của một hàm số toán có công thức tổng quát
∫
f
(
x
)
d
x
=
lim
Δ
x
→
0
∑
[
f
(
x
)
+
Δ
f
(
x
)
2
]
Δ
x
=
F
(
x
)
+
C
{\displaystyle \int f(x)dx=\lim _{\Delta x\rightarrow 0}\sum [f(x)+{\frac {\Delta f(x)}{2}}]\Delta x=F(x)+C}
Luật toán tích phân bất định
edit
Rule
Conditions
1
∫
a
d
x
=
a
x
{\displaystyle \int a\,dx=ax}
2
Homogeniety
∫
a
f
(
x
)
d
x
=
a
∫
f
(
x
)
d
x
{\displaystyle \int af(x)\,dx=a\int f(x)\,dx}
3
Associativity
∫
(
f
±
g
±
h
±
⋯
)
d
x
=
∫
f
d
x
±
∫
g
d
x
±
∫
h
d
x
±
⋯
{\displaystyle \int {\left(f\pm g\pm h\pm \cdots \right)\,dx}=\int f\,dx\pm \int g\,dx\pm \int h\,dx\pm \cdots }
4
Integration by Parts
∫
a
b
f
g
′
d
x
=
[
f
g
]
a
b
−
∫
a
b
g
f
′
d
x
{\displaystyle \int _{a}^{b}fg'\,dx=\left[fg\right]_{a}^{b}-\int _{a}^{b}gf'\,dx}
4
General Integration by Parts
∫
f
(
n
)
g
d
x
=
f
(
n
−
1
)
g
′
−
f
(
n
−
2
)
g
″
+
…
+
(
−
1
)
n
∫
f
g
(
n
)
d
x
{\displaystyle \int f^{(n)}g\,dx=f^{(n-1)}g'-f^{(n-2)}g''+\ldots +(-1)^{n}\int fg^{(n)}\,dx}
5
∫
f
(
a
x
)
d
x
=
1
a
∫
f
(
x
)
d
x
{\displaystyle \int f(ax)\,dx={\frac {1}{a}}\int f(x)\,dx}
6
Substitution Rule
∫
g
{
f
(
x
)
}
d
x
=
∫
g
(
u
)
d
x
d
u
d
u
=
∫
g
(
u
)
f
′
(
x
)
d
u
{\displaystyle \int g\{f(x)\}\,dx=\int g(u){\frac {dx}{du}}\,du=\int {\frac {g(u)}{f'(x)}}\,du}
u
=
f
(
x
)
{\displaystyle u=f(x)\,}
7
∫
x
n
d
x
=
x
n
+
1
n
+
1
{\displaystyle \int x^{n}\,dx={\frac {x^{n+1}}{n+1}}}
n
≠
−
1
{\displaystyle n\neq -1\,}
8
∫
1
x
d
x
=
ln
|
x
|
{\displaystyle \int {\frac {1}{x}}\,dx=\ln |x|}
9
∫
e
x
d
x
=
e
x
{\displaystyle \int e^{x}\,dx=e^{x}}
10
∫
a
x
d
x
=
a
x
ln
|
a
|
{\displaystyle \int a^{x}\,dx={\frac {a^{x}}{\ln |a|}}}
a
≠
1
{\displaystyle a\neq 1}