Home
Random
Log in
Settings
Donate
About Wikiversity
Disclaimers
Search
Tích phân hàm số toán cosine
Language
Watch
Edit
∫
cos
n
a
x
d
x
=
cos
n
−
1
a
x
sin
a
x
n
a
+
n
−
1
n
∫
cos
n
−
2
a
x
d
x
(for
n
>
0
)
{\displaystyle \int \cos ^{n}ax\;dx={\frac {\cos ^{n-1}ax\sin ax}{na}}+{\frac {n-1}{n}}\int \cos ^{n-2}ax\;dx\qquad {\mbox{(for }}n>0{\mbox{)}}\,\!}
∫
x
cos
a
x
d
x
=
cos
a
x
a
2
+
x
sin
a
x
a
+
C
{\displaystyle \int x\cos ax\;dx={\frac {\cos ax}{a^{2}}}+{\frac {x\sin ax}{a}}+C\,\!}
∫
cos
2
a
x
d
x
=
x
2
+
1
4
a
sin
2
a
x
+
C
=
x
2
+
1
2
a
sin
a
x
cos
a
x
+
C
{\displaystyle \int \cos ^{2}{ax}\;dx={\frac {x}{2}}+{\frac {1}{4a}}\sin 2ax+C={\frac {x}{2}}+{\frac {1}{2a}}\sin ax\cos ax+C\!}
∫
x
2
cos
2
a
x
d
x
=
x
3
6
+
(
x
2
4
a
−
1
8
a
3
)
sin
2
a
x
+
x
4
a
2
cos
2
a
x
+
C
{\displaystyle \int x^{2}\cos ^{2}{ax}\;dx={\frac {x^{3}}{6}}+\left({\frac {x^{2}}{4a}}-{\frac {1}{8a^{3}}}\right)\sin 2ax+{\frac {x}{4a^{2}}}\cos 2ax+C\!}
∫
x
n
cos
a
x
d
x
=
x
n
sin
a
x
a
−
n
a
∫
x
n
−
1
sin
a
x
d
x
{\displaystyle \int x^{n}\cos ax\;dx={\frac {x^{n}\sin ax}{a}}-{\frac {n}{a}}\int x^{n-1}\sin ax\;dx\,\!}
∫
cos
a
x
x
d
x
=
ln
|
a
x
|
+
∑
k
=
1
∞
(
−
1
)
k
(
a
x
)
2
k
2
k
⋅
(
2
k
)
!
+
C
{\displaystyle \int {\frac {\cos ax}{x}}dx=\ln |ax|+\sum _{k=1}^{\infty }(-1)^{k}{\frac {(ax)^{2k}}{2k\cdot (2k)!}}+C\,\!}
∫
cos
a
x
x
n
d
x
=
−
cos
a
x
(
n
−
1
)
x
n
−
1
−
a
n
−
1
∫
sin
a
x
x
n
−
1
d
x
(for
n
≠
1
)
{\displaystyle \int {\frac {\cos ax}{x^{n}}}dx=-{\frac {\cos ax}{(n-1)x^{n-1}}}-{\frac {a}{n-1}}\int {\frac {\sin ax}{x^{n-1}}}dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫
d
x
cos
a
x
=
1
a
ln
|
tan
(
a
x
2
+
π
4
)
|
+
C
{\displaystyle \int {\frac {dx}{\cos ax}}={\frac {1}{a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}
∫
d
x
cos
n
a
x
=
sin
a
x
a
(
n
−
1
)
cos
n
−
1
a
x
+
n
−
2
n
−
1
∫
d
x
cos
n
−
2
a
x
(for
n
>
1
)
{\displaystyle \int {\frac {dx}{\cos ^{n}ax}}={\frac {\sin ax}{a(n-1)\cos ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cos ^{n-2}ax}}\qquad {\mbox{(for }}n>1{\mbox{)}}\,\!}
∫
d
x
1
+
cos
a
x
=
1
a
tan
a
x
2
+
C
{\displaystyle \int {\frac {dx}{1+\cos ax}}={\frac {1}{a}}\tan {\frac {ax}{2}}+C\,\!}
∫
d
x
1
−
cos
a
x
=
−
1
a
cot
a
x
2
+
C
{\displaystyle \int {\frac {dx}{1-\cos ax}}=-{\frac {1}{a}}\cot {\frac {ax}{2}}+C\,\!}
∫
x
d
x
1
+
cos
a
x
=
x
a
tan
a
x
2
+
2
a
2
ln
|
cos
a
x
2
|
+
C
{\displaystyle \int {\frac {x\;dx}{1+\cos ax}}={\frac {x}{a}}\tan {\frac {ax}{2}}+{\frac {2}{a^{2}}}\ln \left|\cos {\frac {ax}{2}}\right|+C}
∫
x
d
x
1
−
cos
a
x
=
−
x
a
cot
a
x
2
+
2
a
2
ln
|
sin
a
x
2
|
+
C
{\displaystyle \int {\frac {x\;dx}{1-\cos ax}}=-{\frac {x}{a}}\cot {\frac {ax}{2}}+{\frac {2}{a^{2}}}\ln \left|\sin {\frac {ax}{2}}\right|+C}
∫
cos
a
x
d
x
1
+
cos
a
x
=
x
−
1
a
tan
a
x
2
+
C
{\displaystyle \int {\frac {\cos ax\;dx}{1+\cos ax}}=x-{\frac {1}{a}}\tan {\frac {ax}{2}}+C\,\!}
∫
cos
a
x
d
x
1
−
cos
a
x
=
−
x
−
1
a
cot
a
x
2
+
C
{\displaystyle \int {\frac {\cos ax\;dx}{1-\cos ax}}=-x-{\frac {1}{a}}\cot {\frac {ax}{2}}+C\,\!}
∫
cos
a
1
x
cos
a
2
x
d
x
=
sin
(
a
1
−
a
2
)
x
2
(
a
1
−
a
2
)
+
sin
(
a
1
+
a
2
)
x
2
(
a
1
+
a
2
)
+
C
(for
|
a
1
|
≠
|
a
2
|
)
{\displaystyle \int \cos a_{1}x\cos a_{2}x\;dx={\frac {\sin(a_{1}-a_{2})x}{2(a_{1}-a_{2})}}+{\frac {\sin(a_{1}+a_{2})x}{2(a_{1}+a_{2})}}+C\qquad {\mbox{(for }}|a_{1}|\neq |a_{2}|{\mbox{)}}\,\!}