Home
Random
Log in
Settings
Donate
About Wikiversity
Disclaimers
Search
Tích phân hàm số toán tangent
Language
Watch
Edit
∫
tan
a
x
d
x
=
−
1
a
ln
|
cos
a
x
|
+
C
=
1
a
ln
|
sec
a
x
|
+
C
{\displaystyle \int \tan ax\;dx=-{\frac {1}{a}}\ln |\cos ax|+C={\frac {1}{a}}\ln |\sec ax|+C\,\!}
∫
tan
n
a
x
d
x
=
1
a
(
n
−
1
)
tan
n
−
1
a
x
−
∫
tan
n
−
2
a
x
d
x
(for
n
≠
1
)
{\displaystyle \int \tan ^{n}ax\;dx={\frac {1}{a(n-1)}}\tan ^{n-1}ax-\int \tan ^{n-2}ax\;dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫
d
x
q
tan
a
x
+
p
=
1
p
2
+
q
2
(
p
x
+
q
a
ln
|
q
sin
a
x
+
p
cos
a
x
|
)
+
C
(for
p
2
+
q
2
≠
0
)
{\displaystyle \int {\frac {dx}{q\tan ax+p}}={\frac {1}{p^{2}+q^{2}}}(px+{\frac {q}{a}}\ln |q\sin ax+p\cos ax|)+C\qquad {\mbox{(for }}p^{2}+q^{2}\neq 0{\mbox{)}}\,\!}
∫
d
x
tan
a
x
=
1
a
ln
|
sin
a
x
|
+
C
{\displaystyle \int {\frac {dx}{\tan ax}}={\frac {1}{a}}\ln |\sin ax|+C\,\!}
∫
d
x
tan
a
x
+
1
=
x
2
+
1
2
a
ln
|
sin
a
x
+
cos
a
x
|
+
C
{\displaystyle \int {\frac {dx}{\tan ax+1}}={\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax+\cos ax|+C\,\!}
∫
d
x
tan
a
x
−
1
=
−
x
2
+
1
2
a
ln
|
sin
a
x
−
cos
a
x
|
+
C
{\displaystyle \int {\frac {dx}{\tan ax-1}}=-{\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax-\cos ax|+C\,\!}
∫
tan
a
x
d
x
tan
a
x
+
1
=
x
2
−
1
2
a
ln
|
sin
a
x
+
cos
a
x
|
+
C
{\displaystyle \int {\frac {\tan ax\;dx}{\tan ax+1}}={\frac {x}{2}}-{\frac {1}{2a}}\ln |\sin ax+\cos ax|+C\,\!}
∫
tan
a
x
d
x
tan
a
x
−
1
=
x
2
+
1
2
a
ln
|
sin
a
x
−
cos
a
x
|
+
C
{\displaystyle \int {\frac {\tan ax\;dx}{\tan ax-1}}={\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax-\cos ax|+C\,\!}