Home
Random
Log in
Settings
Donate
About Wikiversity
Disclaimers
Search
Thí dụ toán đạo hàm
Language
Watch
Edit
f
(
x
)
=
x
2
{\displaystyle f(x)=x^{2}}
f
(
x
+
h
)
=
(
x
+
h
)
2
=
x
2
+
2
x
h
+
h
2
{\displaystyle f(x+h)=(x+h)^{2}=x^{2}+2xh+h^{2}}
f
(
x
)
=
x
2
{\displaystyle f(x)=x^{2}}
d
f
(
x
)
d
x
=
f
′
(
x
)
=
lim
h
→
0
∑
(
x
+
h
)
2
−
x
2
h
=
lim
h
→
0
2
x
+
h
=
2
x
{\displaystyle {\frac {df(x)}{dx}}=f^{'}(x)=\lim _{h\to 0}\sum {\frac {(x+h)^{2}-x^{2}}{h}}=\lim _{h\to 0}2x+h=2x}
f
(
x
)
=
e
x
{\displaystyle f(x)=e^{x}}
f
(
x
+
h
)
=
e
x
+
h
{\displaystyle f(x+h)=e^{x+h}}
f
(
x
)
=
e
x
{\displaystyle f(x)=e^{x}}
d
f
(
x
)
d
x
=
f
′
(
x
)
=
lim
h
→
0
∑
e
x
+
h
h
−
e
x
=
lim
h
→
0
e
x
(
e
h
−
1
)
=
e
x
lim
h
→
0
(
e
h
−
1
)
=
e
x
.1
=
e
x
{\displaystyle {\frac {df(x)}{dx}}=f^{'}(x)=\lim _{h\to 0}\sum {\frac {e^{x+h}}{h}}-e^{x}=\lim _{h\to 0}e^{x}(e^{h}-1)=e^{x}\lim _{h\to 0}(e^{h}-1)=e^{x}.1=e^{x}}
f
(
x
)
=
sin
(
x
)
{\displaystyle f(x)=\sin(x)}
f
′
(
x
)
=
lim
h
→
0
sin
(
x
+
h
)
−
sin
(
x
)
h
{\displaystyle f'(x)=\lim _{h\to 0}{\frac {\sin(x+h)-\sin(x)}{h}}}
=
lim
h
→
0
cos
(
x
)
sin
(
h
)
+
cos
(
h
)
sin
(
x
)
−
sin
(
x
)
h
{\displaystyle =\lim _{h\to 0}{\frac {\cos(x)\sin(h)+\cos(h)\sin(x)-\sin(x)}{h}}}
=
lim
h
→
0
cos
(
x
)
sin
(
h
)
+
(
cos
(
h
)
−
1
)
sin
(
x
)
h
{\displaystyle =\lim _{h\to 0}{\frac {\cos(x)\sin(h)+(\cos(h)-1)\sin(x)}{h}}}
=
lim
h
→
0
cos
(
x
)
sin
(
h
)
h
+
lim
h
→
0
(
cos
(
h
)
−
1
)
sin
(
x
)
h
{\displaystyle =\lim _{h\to 0}{\frac {\cos(x)\sin(h)}{h}}+\lim _{h\to 0}{\frac {(\cos(h)-1)\sin(x)}{h}}}
=
cos
(
x
)
×
1
+
sin
(
x
)
×
0
{\displaystyle =\cos(x)\times 1+\sin(x)\times 0}
=
cos
(
x
)
{\displaystyle =\cos(x)}
f
(
x
)
=
cos
(
x
)
{\displaystyle f(x)=\cos(x)}
f
′
(
x
)
=
lim
h
→
0
cos
(
x
+
h
)
−
cos
(
x
)
h
{\displaystyle f'(x)=\lim _{h\to 0}{\frac {\cos(x+h)-\cos(x)}{h}}}
=
lim
h
→
0
cos
(
x
)
cos
(
h
)
−
sin
(
h
)
sin
(
x
)
−
cos
(
x
)
h
{\displaystyle =\lim _{h\to 0}{\frac {\cos(x)\cos(h)-\sin(h)\sin(x)-\cos(x)}{h}}}
=
lim
h
→
0
cos
(
x
)
(
cos
(
h
)
−
1
)
−
sin
(
x
)
sin
(
h
)
h
{\displaystyle =\lim _{h\to 0}{\frac {\cos(x)(\cos(h)-1)-\sin(x)\sin(h)}{h}}}
=
lim
h
→
0
cos
(
x
)
(
cos
(
h
)
−
1
)
h
−
lim
h
→
0
sin
(
x
)
sin
(
h
)
h
{\displaystyle =\lim _{h\to 0}{\frac {\cos(x)(\cos(h)-1)}{h}}-\lim _{h\to 0}{\frac {\sin(x)\sin(h)}{h}}}
=
cos
(
x
)
×
0
−
sin
(
x
)
×
1
{\displaystyle =\cos(x)\times 0-\sin(x)\times 1}
=
−
sin
(
x
)
{\displaystyle =-\sin(x)}