Hình 1 – Một tam giác với các góc α (hoặc A), β (hoặc B), γ (hoặc C) lần lượt đối diện với các cạnh a, b, c.

Trong lượng giác, định lý cos biểu diễn sự liên quan giữa chiều dài của các cạnh của một tam giác phẳng với cosin của góc tương ứng:





Định lý cos khái quát định lý Pytago (định lý Pytago là trường hợp riêng trong tam giác vuông): nếu γ là góc vuông thì cos γ = 0, và định lý cos trở thành định lý Pytago:

Định lý cos được dùng để tính cạnh thứ ba khi biết hai cạnh còn lại và góc giữa hai cạnh đó, hoặc tính các góc khi chỉ biết chiều dài ba cạnh của một giác.


Hình 2 – Tam giác tù ABC với đường cao BH


Hình 3 – Ứng dụng của định lý cos: tìm cạnh chưa biết và góc chưa biết. Định lý cos được dùng trong phép đạc tam giác để giải một tam giác hoặc một đường tròn. Ví dụ trong Hình 3, định lý cos được dùng để tìm:

  • cạnh thứ ba của một tam giác nếu đã biết hai cạnh còn lại và góc giữa chúng:
  • ba góc nếu biết ba cạnh của tam giác
  • cạnh thứ ba nếu biết hai cạnh còn lại và góc đối diện một trong hai cạnh đó:

Công thức thứ ba có được nhờ giải phương trình bậc hai a2 − 2ab cos γ + b2c2 = 0 với ẩn a. Phương trình này có hai nghiệm dương nếu b sin γ < c < b, một nghiệm dương nếu cb hoặc c = b sin γ, và vô nghiệm nếu c < b sin γ.